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Abstruct 

The flow structure in the reservoir of a ceramic tape 
casting head is examined using a linear finite ele- 
ment formulation of the governing fluid mechanical 
equations, written in terms of the streamfunction 
and vorticity. Streamline plots are presented for 
representative reservoir shapes and depth-to-width 
(aspect) ratios. 

Analysis predicts that the flow is characterised 
by an ever-present primar.y recirculation, adjacent 
to the moving web, and that the size and number of 
secondary recirculations above the primary one 
depend upon both the aspect ratio of the reservoir 
and the angle of inclination of the side walls. In 
particular, it is shown that the number of recircula- 
tions spanning the entire width of the reservoir 
increases at critical values of the aspect ratio, when 
eddies emanating from the upper corners merge 
together. The analysis also shows that for a given 
reservoir depth, it is possible to postpone the devel- 
opment of these secondary recirculations by ‘open- 
ing out’ the casting head i.e. making the sides 
further away from the vertical, which may be a 
useful control mechanism for the design of such sys- 
tems. 0 1997 Elsevier Science Limited. 

1 Introduction 

Flat, thin ceramic layers are used widely in indus- 
try as a starting point for numerous ceramic prod- 
ucts including thin capacitors, piezoelectric and 
electrostrictive monolayers, electronic substrates 
and multi-layer components.’ These layers may be 
produced using a number of rival technologies 
including dry pressing, slip casting, extrusion/ 
extrusion plus calendering, dry powder compac- 
tion, screen printing, electrophoretic deposition 
and tape casting. 2,3 However, it is the last process, 
illustrated in Fig. 1, that is of interest here. Tape 

casting is a relatively new process first used for the 
production of ceramic sheet capacitors in the 
1940~~ and is now an accepted precision coating 
method for the production of high-tech ceramic 
components. Tape casting can operate at speeds 
of up to several metres per minute and, of all 
the technologies listed above, it offers the widest 
range of layer thicknesses (from 20 to several 
hundred microns) and the thinnest self-supporting 
layers.5 

Figure 1 is a schematic of a commonly encoun- 
tered tape casting configuration. It consists of a 
reservoir bounded by rigid side walls and the 
slurry contained therein, while open at the top can 
escape from beneath a small gap, height H, and 
accompanying doctor blade located at the lower 
edge of either the leading (as shown here) or trail- 
ing side-wall. The tape caster is mounted in 
contact with a flexible web (plastic substrate 
or steel belt) which forms the lower boundary of 
the system. Accordingly, relative motion between 
the reservoir and web can be produced in one of 
two ways: by pulling the web horizontally (contin- 
uous casting) with the casting head fixed (see 
Fig. 1) which is the usual mode of operation in 
the manufacture of large quantities of tapes, or by 
moving the casting head relative to a fixed web 
(discontinuous casting) typical of laboratory scale 
systems. 

Few analyses of tape casting, reported in the 
literature, have been concerned with understand- 
ing its fundamental fluid mechanical behaviour’ 
and most of these have tended to concentrate on 
understanding the influence of various casting 
parameters on the thickness and uniformity of the 
deposited layer. &* However, in the context of 
industrial coating processes, Clarke’ and Gaskell 
et al.” have noted that flow structure within coat- 
ing/casting heads can have important implications 
for the quality of the final coated product. Conse- 
quently, in tape casting it is also important to 
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Fig. 1. Schematic of the ceramic tape casting process. 

understand how the flow structure in the slurry 
reservoir is influenced by the casting head geome- 
try and operating conditions since the presence of 
strongly recirculating flow can lead to inhomo- 
geneities in the slurry. For example, bubbles 
and/or particulate contaminants may build up 
in these recirculations and, when subsequently 
released, may become trapped under the doctor 
blade, leading to non-uniformities such as 
‘streaks’ in the deposited layer. 

Recent work by Loest et al.,” for a specific case 
of a viscoplastic slurry and a relatively large cast- 
ing gap (cf. Fig. l), focused on the flow into an 
extended doctor blade region as well as the exit 
region where a free surface (meniscus) forms. The 
current work, however, is concerned with analy- 
sing flow in the slurry reservoir itself in the more 
usual situation of a small casting gap. In order to 
analyse the flow in the reservoir a simple model 
for its motion is formulated for arbitrary combi- 
nations of casting head side wall inclination and 
reservoir depth under the assumption of New- 
tonian flow behaviour. While in practice, of 
course, ceramic slurries can have widely different 
rheologies,‘,‘2 ranging from pseudoplastic (shear- 
thinning) and dilatant (thickening) to viscoplastic 
and fully viscoelastic, the first is the most 
commonly occurringI and predictions for the 
Newtonian case can still provide valuable infor- 
mation for pseudoplastic flows.14 The model leads 
to a boundary value problem (bvp) which can be 
solved analytically for the special case with ver- 
tical side walls,15 but the general case of non- 
vertical side walls is solved using a finite element 
technique. The results show that recirculating flow 
in the reservoir is inevitable adjacent to the web 
but that both the reservoir aspect ratio, i.e. the 
ratio of reservoir height, H, to width, W, and side 
wall inclinations are key factors in determining the 
flow structure. 

2 Analysis 

2.1 Governing equations 
In the following analysis it is assumed that the 
flow is steady and isothermal and that the ceramic 
slurry behaves as an incompressible, Newtonian 
fluid. If, in addition, the casting head is sufficiently 
long in one particular direction (I’) so that the 
flow is essentially two-dimensional in a cross- 
sectional (X, z) plane, the flow is governed by the 
two-dimensional momentum (Navier-Stokes) and 
continuity equations 

p_u . v_u = -VP + @_u 

I o=v.y ’ 
(1) 

where _U = (U,, U,) is the two-dimensional vel- 
ocity field, P is the modified pressure,16 modified 
to take account of gravitational forces, and p and 
77 are the slurry density and viscosity respectively. 
In theoretical fluid mechanics, it is usual practice 
to non-dimensionalise the velocity and pressure 
fields with respect to typical velocity and pres- 
sure’ scalings. If u* and L* are suitable velocity 
and length scales for the flow, it is convenient to 
introduce non-dimensional coordinates x = X/L*, 
z = Z/L*, velocities 21 = Q/u* and modified pres- 
sures p = PL*IqU* which allows eqns (1) to be 
rewritten as 

Reu.Vu=-Vp+V2g 

I o=v.u ’ 
(2) 

where Re = pVL*lq is the Reynolds number 
measuring the relative importance of inertia to 
viscous forces. In most practical tape casting 
applications Re is at most O(l)‘,*,” and it is, there- 
fore, a reasonable simplification to adopt the 
‘Stokes’ flow approximation of neglecting inertial 
effects altogether. This is equivalent to setting 
Re = 0 on the left hand side of eqn (2) as a result 
of which it is possible to formulate the equations 
of motion in terms of a streamfunction +, where 

UX = a+taz, u, = -&@x which automatically 
satisfies the continuity equation. In Stokes flow 
the momentum equation can be recast in terms 
of the biharmonic equation for the streamfunc- 
tion.16 

v4* = 0. (3) 

In the numerical technique adopted here, it is 
convenient to reformulate eqn (3) in terms of the 
vorticity w, in which case the biharmonic equation 
becomes 
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3 Modelling Assumptions 

The above assumptions of steady, two-dimensional 
Stokes flow is augmented with the following addi- 
tional simplifications: 

(i) the upper slurry-air interface is planar with 
the air adjacent to the slurry remaining at 
uniform pressure and with negligible viscos- 
ity so that the shemar stress vanishes at the 
interface; 

(ii) the mass outflow from the reservoir beneath 
the doctor blade is negligible compared to 
that already in the :reservoir. 

These assumptions require further comment. 
Strictly speaking, assumption (i) corresponds to a 
case of infinite surface tension. However, the close 
agreement between theoretical predictions based 
on this assumption and experimental flow visuali- 
sations reported by Canedo and Denson,” for 
flow in polymer processing equipment, and by 
Gaskell et al.” in roll coating applications, sup- 
ports the validity of this assumption in practical 
applications. The second assumption is motivated 
by the fact that the ratio of reservoir height to 
casting height, H/H,, is typically of the order of 
100,’ so that the fractional rate of mass transfer 
out of the reservoir should indeed be small. Effec- 
tively, this assumption allows the reservoir to be 
taken as closed and with steady flow therein. 

Scaling lengths by W/2, the semi-width of the 
reservoir bottom, and velocities by U,,,, the web 
speed, permits the modBe to be formulated in 
terms of the dimensionless bvp shown in Fig. 2 
where A = H/W is the ca.vity aspect ratio and 0,, 
OR are the angles that the left and right walls make 
with the vertical respectively. 

4 Numerical Solution - the Streamfunction- 
Vorticity Method 

The numerical approach adopted here is based 
on a variational formula.tion of the Stokes flow 

(-l-ZAta&r. ,1A) 

* 
&a=0 

Fig. 2. Biharmonic bvp for idealised model of reservoir flow 
in a ceramic tape caster. 

equations which are then discretised via the finite 
element (FE) method. Only the outstanding fea- 
tures of the method are described here; interested 
readers are referred to Gunzburger” for a descrip- 
tion of FE methods in fluid mechanics and to 
Thompson” for a full exposition of the chosen 
‘streamfunction-vorticity’ method. 

It can be shown’9-2’ that for closed domains IR, 
with boundary 3R, for which $ is constant on a(n 
and for which the boundary conditions are simple 
combinations of either no-slip at a solid boundary 
or vanishing shear stress at a planar gas-liquid 
interface (as is the case in Fig. 2), eqns (4) are 
satisfied by those scalar fields 1+5 and o that make 
the following functional 

I(@ 9 4 = -V@Vw+$ dfl+ 1 i an’ V[:wdS. (5) 
stationary with respect to arbitrary variations in 4 
and o, where an, is the portion of the boundary 
over which no-slip conditions prevail and whose 
tangential velocity equals V,. 

The basic idea of the FE method is to tessellate 
the fluid domain into a number of contiguous ele- 
ments, each with a number of nodes at which the 
values of J, and w are sought. Suppose, now, that 
the domain is tessellated into M such elements 
with N nodes and let Nk denote the interpolation 
function associated with the kth node. If & and 
Wk are the values of the streamfunction and vortic- 
ity at the kth node then their values at any point 
in the fluid are approximated by 

rl,= i NklcIk ; w= i NkGk, (6) 
k=l k=l 

respectively. Substituting these FE approximations 
into eqn (5) yields 

-VNj. VNkWk$ d!2 + C ) } jy, { Ian N;V,Ydr}- c7) 

The FE equations are obtained by requiring sta- 
tionarity of eqn (7) with respect to the independent 
nodal parameters (cli, rji yielding 

$ = i 1 
WJ k=l Cl 

[Njlv,ij, - VN, .vN,$,Idfi 

+ I a,,NjVldS = 0, 

and 

VNj . vN,i3,dfl = 0. 

(8) 

(9) 
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Expressions (8) and (9) yield the required 2N 
algebraic equations for the unknowns & and 
i& which, owing to their linear nature, can be 
obtained by a single matrix inversion. In the 
present work eqns (8) and (9) are solved using an 
efficient ‘Frontal’ solution method, originally due 
to Hood.22 

4.1 Treatment of corner singularities 
The conventional assumption of no-slip between 
liquid and solid surfaces loses its validity at both 
lower corners of the closed reservoir since the 
liquid velocity is undefined close to these points. 
In the numerical results reported here, the need 
for excessive grid refinement near these corners 
is removed by employing Moffatt’s23 theoretical 
results for flow in such corners to generate accu- 
rate boundary conditions on vorticity at the nodes 
closest to them. This technique has proved effec- 
tive in the past for a wide range of different 
Stokes flow problems.‘5,‘9-21 

5 Results 

All numerical results reported here have been 
tested for grid independence by obtaining numeri- 
cal solutions on three different grid levels and then 
checking that the solutions have converged with 
respect to the grid. A typical FE grid used in the 
numerical solutions is shown in Fig. 3; it consists 
of 544 elements and 1169 nodes. 

To facilitate later comparison with results for 
more general situations, it is instructive to begin 
by reviewing the results reported by Gaskell et 
al. I5 for the special case with vertical side walls for 
which Or_ = 0, = 0”. In this case the bvp shown 
in Fig. 2 can be solved analytically, while more 
general situations have to be solved numerically. 
Figures 4 and 5 show streamline patterns for 
reservoirs with aspect ratios in the range A E 
[0.25,50]. For A I 1.0 each flow consists of a 
single primary recirculation pattern, symmetrical 
about the z axis, whose centre is closer to the 
moving web than to the slurry-air interface. As A 

Fig. 3. A typical FE grid used in numerical solutions of the 
idealised model’s bvp. 

increases beyond 1 .O, eddies can be identified in 
the vicinity of the junctions between the side walls 
and the slurry-air interface which eventually 
merge to form a secondary eddy above the pri- 
mary one at a critical aspect ratio AT E (1.61, 
1.62). This eddy creation mechanism and eddy 
growth, out from the upper reservoir corners, is 
repeated regularly as the aspect ratio is increased 
further. Figure 5 (c), for example, shows stream- 
lines with A = 5.0, for which the flow consists 
of three large recirculations and a smaller one 
adjacent to the slurry-air interface. 

Figures 6 and 7 show how the flow structure 
is altered by setting 0, = 13, = 15”. For A I 1.0 
the flow is qualitatively similar to that observed 
for vertical side walls in that the flow consists of 
a single, large recirculation pattern with the 
eddy centre closer to the moving web than it is 
to the slurry-air interface. However, a slight 
difference between these flows is that for 0,_ = 0, 
= 15” there are now small corner eddies at the 
junction between the side walls and the slurry-air 

(a) < 
* 

(W 

Fig. 4. Streamlines for the case 13, = & = O” with A = (a) 0.25, 
(b) 0.5, (c) 1.0. 
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Fig. 5. Streamlines for the case 0, = & = 0” with A = (a) 1.61, (b) 1.62 (c) 500. 
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Fig. 6. Streamlines for the case 6 = & = 15’ with A = 
(a) 0.25, (b) 0.50 (c) 140. 

Fig. 7. Streamlines for the case oL = OR = 15” with A = 
(a) 2.56, (b) 2.57 (c) 340. 
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interface. As A increases beyond 1 .O the corner 
eddies eventually grow until at a critical aspect 
ratio A: E (2.56, 2.57) the corner eddies merge 
and form a secondary eddy structure above 
the primary one. Figures 8 and 9 show streamlines 
for 19, = 0, = 30”. For A I 1 .O the flow is quan- 
titatively similar to that for 0, = 0, = 15”, 
but now the critical aspect ratio AT E’ (4.65, 4.66). 
Figure 10 examines the general trend that increas- 
ing 0,_ and 0, delays the merging of the corner 
eddies to form a secondary eddy structure above 
the primary one by showing the critical aspect 
ratio A:, at which this merging occurs, as a 
function of 8 = 0, = OR. (Note that negative 0 
refers to side walls being inclined inwards.) It can 
be seen that AT increases rapidly as 8 is taken 
above 30”. 

Finally, Figs 11 and 12 show streamlines for the 
asymmetrical case where 19~ = 30” and 0, = 15”. 
Although for A I 1 .O asymmetry only has a minor 
effect on the flow sufficiently far from the reser- 
voir corners and, as predicted by Moffatt,23 the 
relative size of the upper corner eddies is depen- 
dent on the wall inclinations. The asymmetry 
becomes more pronounced as the critical aspect 
ratio AT is approached - the corner eddies adja- 
cent to the left wall are larger than those adjacent 
to the right wall. Figure 12 (c) clearly shows 
the asymmetrical nature of the secondary eddy for 
A = 4.0. 

Fig. 8. Streamlines for the case 19~~ = OR = 30” with A = Fig. 10. Plot of critical aspect ratio At against 0 = 0,_ = OR 
(a) 0.25, (b) 0.50 (c) 1.00. for -50’ 6 8 5 50”. 

(4 

04 

Fig. 9. Streamlines for the case eL = OR = 30” with A = 
(a) 4.65, (b) 4.66 (c) 5.00. 
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Fig. 11. Streamlines for the case eL = 30”, OR = 15” with A = 
(a) 0.25, (b) (I.50 (c) 1.00. 

(4 

Fig. 12. Streamlines for the case 13, = 30”, OR = 15” with A = 
(a) 3.33, (b) 3.34 (c) 4.00. 

6 Conclusion 

In this paper a simple model for flow in the reser- 
voir of a tape caster has been developed whose 
predictions provide valuable insight into the flow 
structure and how it is influenced by the reservoir 
size and shape. Such information can be used to 
optimise casting head design so as to restrict the 
effects of recirculating flow as a possible cause 
of inhomogeneities and even defects in the depos- 
ited layer due to a build-up of bubbles and/or 
particulate contaminants. 

The model predicts that although the existence 
of a primary recirculation, adjacent to the moving 
web, is inevitable the propensity for additional 
recirculations can be controlled by two key 
parameters: the cavity aspect ratio A = H/W and 
the angle of inclination of the side walls. For a 
given casting head design the model predicts that 
the flow consists essentially of a primary recircula- 
tion provided A is below a critical value AT; above 
A: a large secondary eddy spanning the entire 
reservoir width also exists. The model predicts 
that A: increases rapidly as the inclination angles 
O,, 0, are increased. This feature may be useful if, 
for example, it is important to have a specific 
reservoir height in order to supply an adequate 
hydrodynamic head to assist flow through the 
casting gap (particularly important for larger 
doctor-blade gap clearances H,‘) since it is pos- 
sible to postpone the onset of multiple recircula- 
tions simply by increasing 0, and 0,. 

Clearly, the model developed here is only a first 
step towards understanding the fluid mechanics of 
the tape casting process. The model’s predictions 
require a full experimental validation and the 
model needs to be extended to simulate more real- 
istic rheological behaviour.12,2426 In addition to 
this modification the model should be extendable 
to include a small, finite outflux from the reservoir 
and also a full, numerical treatment of the free 
surface film flow of the cast tape after it has left 
the casting head. 
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